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Abstract

The Principal Investigator (PI) in-a-Box knowledge-based
system (K.BS) helps astronauts perform science experiments in
space. These experiments are typically costly to devise and
build, and often difficult to perform. Further, the space
laboratory environment is unique, ever-changing, hectic, and
therefore stressful. The environment requires quick, correct
reactions to events over a wide range of experiments and
disciplines, including ones distant from an astronaut's main
science specialty. This suggests the use of advanced techniques
for data collection, analysis, and decision-making to
maximize the value of the research performed. PI-in-a-Box aids
astronauts with "quick look" data collection, reduction and
analysis, and also with equipment diagnosis and
troubleshooting, procedural reminders, and suggestions for
high-value departures from the pre-planned experiment
protocol. The astronauts have direct access to the system,
which is hosted on a portable computer in the Spacelab
module. The system is in use on the ground for mission
training, and has been delivered to NASA for in-flight use on
the Space Life Sciences (SLS) 2 Shuttle mission scheduled for
August, 1993.

Introduction

The critical resource in astronaut-tended flight
experiments is time. The lack of time affects both pre-
flight training for, and in-flight operation of, the
experiment. This is true currently with the U.S. Space
Shuttle program, and will persist with the advent of Space
Station Freedom operations. Another key factor in space
experimentation is the use of fixed experiment protocols.
This major constraint severely limits the ability of an
earth-bound scientist to change the course of an experiment
even when the data and current situation clearly indicate
that it would be scientifically more valuable to do so.

The PI-in-a-Box KBS helps scientist-astronauts do better
science in space, given fairly severe time constraints and
the need to work in areas outside their main specialty. The

goal is to help the astronaut become a scientific
collaborator with the ground-based Principal Investigator
(PI) who has designed the experiment. The system
facilitates this by sharing with the astronaut observations
about the quality and importance of the data as it is being
collected in-flight. This system has the potential to funda-

mentally change the way crewmembers interact with
ground-based investigators in the Space Station era.

In this paper, we present a logical overview of the
system, continue with a description of our first area of
application, explain the technical details of the current
implementation, and finally share some development philo-
sophy used to manage this multi-year project. This system
continues previous work described in (Young et al. 1989),
(Haymann-Haber et al. 1989) and (Frainier et al. 1990).

Functional overview

The PI-in-a-Box system has several modules (figure 1).

Together they allow the diagnosis of data-collection
problems, hypothesis monitoring and formulation (limited
to an analysis of "interestingness" in the initial system),
determination and scheduling of the experiment's steps, and
general-purpose help for the astronaut-user.

The Data Acquisition Module (DAM) and Data Quality
Monitor (DQM) acquire data from the experiment
(displayed in real-time), ex,xact parameters from the data
and interpret them. The DQM also analyzes the data to
determine quality with respect to the experimental
apparatus and provides results to the Diagnosis and
Troubleshooting Module.

The Diagnosis and Troubleshooting Module (DTM) helps
the astronaut isolate and recover from experiment data-
collection problems. It suggests tests to isolate equipment
faults. It also presents recommendations based on a
computation of problem severity and possible recovery
strategies with respect to remaining experiment session
time (i.e., the system can actually recommend that
troubleshooting not be performed.).

The Interesting Data Filter (IDF) module monitors data
from the experiment passed to it by the DAM. The IDF
analyzes the data to determine its fit with pre-flight
hypotheses. The fit can be either statistical or heuristic.
Deviations are reported as "interesting". These deviations
are defined as "needing confirmation", even if not part of

the original fixed protocol. Once confirmed, they cease to
be interesting.



The Protocol Manager (PM) module generates the best
possible experimental protocol for use at any given time in
the experiment. It also displays information to, and accepts
information from, the user-astronaut (user). Corresponding
to these two major functions, the PM has two logical
components: the scheduling component called the Protocol
Suggester (PS) and the human-computer interface (HCI)
component called the Session Manager (SM).

The PS creates a new experimental protocol upon request.
A request from the user is likely when:
• there is a predicted shortage of time - possible need to cut
steps.
• there is a predicted excess of time - possible need, or

opportunity, to add steps.
• the experiment is giving interesting data - possible need
to substitute steps that will collect more information about
the interesting data.

The SM displays the current state of the experiment
including progress against the protocol and elapsed times,
and the history of other sessions occurring earlier in the
mission. The SM also displays procedural step-by-step
checklists of experimental steps to be performed within the
experiment by the user. The SM updates the current
protocol and elapsed times automatically and in response to
user editing. The SM also offers a scratch-pad to allow
users to record their observations. Users can perform the
following actions using the SM:
• Display the status of the current session. This includes a
list of completed steps, the current step, and all pending
steps. It also includes temporal information about the
session and the current step.
• Display alternative protocols.
• Display the history of other sessions occurring earlier in
the mission. This history is a list of all completed steps,
including the experimental conditions used for each step.
• Display experiment checklists for a given experiment

step.

• Edit the current protocol and all temporal information
known, and used, by the system.
• Replace the current protocol with any of the other
available protocols.
• Order a new set of protocols for consideration (by calling
the PS).
• Initiate an equipment troubleshooting session.

Finally, an Executive module controls module activation
and focus-of-attention. It is also used to augment the
operating system environment, if necessary, for a particular
host CPU.

One further module is planned for future versions of the
system: an Experiment Suggester (ES). The ES will work
in conjunction with the IDF. Given a new hypothesis from
the IDF, the ES will generate a set of tests that can be used
to investigate the new hypothesis.

The first domain - vestibular physiology

The system has first been used in conjunction with a life
sciences experiment in vestibular physiology known as
"The Rotating Dome Experiment". It was devised by one
of the co-authors, Prof. Laurence Young, who is the
director of the Man-Vehicle Laboratory at the
Massachusetts Institute of Technology. The experiment is
conducted by one crew member while another one acts as
subject. The purpose of the experiment is to understand the
human occult-vestibular system, and its relationship to the
phenomenon of space motion-sickness. During the
experiment, the subject's visual field is filled by a dome.
The dome, which contains a constellation of dots, is rotated

at various speeds and directions. This induces "vection", or
the sensation that the subject is rotating instead of the dots.
Voluntary and involuntary reactions to the vection are
measured. There are typically two or three in-flight
sessions each involving two to four crew members. An
experiment session consists of equipment setup, equipment
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electricalcheckout,severalexperimentrunson thefirst
subject,introductionof follow-onsubjects,andequipment
shatdownandstowage.The experiment has been flown in

space three times in the past 1 , and will fly again this year

(1993). When performed in space, this experiment
generates five analog data channels. While the astronauts
could monitor two of the five channels in real-time on a

small oscilloscope, they are not as expert as the ground-
based investigator at validating, or reacting to, the data.
Investigators can monitor all of the channels, but the
experiment data are subject to delays and outages as they
are passed from the shuttle to relay satellites to and through
the ground-based telecommunications system. Further, the
investigators are quite limited in their ability to change the
course of the experiment during an hour-long session. In
fact, they are limited in their ability to change the course of
the experiment during any remaining in-flight experiment
sessions.

PI-in-a-Box has direct access to all five data channels and

performs "quick-look" validation and analysis in real-time.
The analysis is driven by heuristics compiled from the
investigators and the results are communicated to the
astronaut performing the experiment. Thus, the system
provides the astronaut advice on how to best use the
precious time allocated to the experiment. This advice is
based on the pre-flight plan, modified by all of the events
that have occurred in flight, including a record of the
experiment apparatus' performance, the list of crew
members that have already performed the experiment, and
what the analyzed data indicated about each of these
subjects. Specific advice includes:
• recommendations on accepting a degradation of the
experiment's data collection, or on spending time to repair
a problem. If repair is elected, there is a step-by-step
diagnosis/repair plan offered to the user.
• advice on the order in which to test subjects, and the order
of individual test steps for a given subject.
• alerts about analyzed data that appear to be of particularly
high value ("interesting" data).

There are other features that allow review of previously
completed portions of the experiment, and that facilitate

planning and/or replanning future experiment sessions.
Finally, there are features providing reminders on setting
up and using the experiment apparatus.

connection at the junction of two cables is damaged. The
problem affects one of the two electromyography data
channels. The experiment setup is "on time", but the
problem must be addressed. Further, there will be a voice

and data outage (LOS) commencing in five minutes that
will have a duration of 20 minutes. Without Pl-in-a-Box,

the crew would typically attempt to repair the apparatus for
a while, and then ask the ground for advice if the effort was
unsuccessful. If the LOS was in effect, the advice could not
arrive until after the 20-minute blackout. With PI-in-a-Box,

the crew could ask for a recommendation at any time. In
this situation, even if the system had a repair procedure
available it would recommend not spending time repairing
the low-priority channel, but instead using that time to get
data from the scheduled subjects.

Let us now assume that the astronauts declined the

recommendation and spent 20 minutes at the repair. They
are now part way through the experiment protocol and 15
minutes behind schedule. The astronauts realize that they
are going to have to cut the experiment short. Without PI-
in-a-Box, the crew would typically work as far along as
they could and then cut the last steps of the protocol. In
this case, the entire second subject would be eliminated.
With PI-in-a-Box, the crew could ask again for a
recommendation. Here, the system would recommend
cutting the last experiment condition for the first subject,
the first experiment condi:ion for the second subject, and
then continue with the rest of the experiment. This
recommendation takes intc account the various setup times
and scientific importance of the experiment steps, realizing
that a lengthy setup was required for two low-priority
steps. Eliminating both the setup and the steps saved 13

minutes and increased the "coverage ''2 of the f'trst session.

Current implementation

As fielded, the system runs on a single Macintosh
PowerBook 170, which hosts all six modules. There is one

other piece of hardware, an external (GW Instruments)
analog-to-digital converter connected to the PowerBook's
Small Computer System Interface (SCSI) port. The
PowerBook is fitted with 8 MB RAM (the maximum

available on that model) and a 40 MB internal hard drive. 3

Some typical scenarios

Let us assume that it is now two days after lift-off. The
first session involves two astronauts who will alternate as

subject and operator. The system has been set up for the
first session but there is a problem. An electrical

1 The Rotating Dome Experiment flew on Space Shuttle-

hosted SpaceLab missions SL-1 (in 1983), D-1 (in 1985),
and SLS-1 (in 1991).

2 The coverage heuristic states that it is better to have at

least some data on each subject than to have a full set on
runs on one subject with no data on another.

3 All materials and equiI, ment used on and in the Space
Shuttle require a "qualification" (analysis and test for
safety, reliability, etc.). These tests need to be performed
in advance of the mission's Critical Design Review. It
was not possible to "flight qualify" more recent (and more
capable) versions of the PowerBook for our target
mission.
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Figure 2: PI-in-a-Box physical-logical mapping

Three main software tools were used; CLIPS, LabVIEW,
and HyperCard.

CLIPS, available from NASA/COSMIC, serves as the

inference engine for the application. This OPS-style expert
system shell is used by the system for schedule repair (PS),
diagnosis (DTM), and symbolic analysis (IDF). Key factors
indicating its use included: low cost, availability of source
code (facilitating tool extension and customization),
excellent support, continuous upgrades, a strong user
group, and widespread use.

LabVIEW, available from National Instruments, controls
data collection, reduction, validation and archival. It is a

graphical data flow language ("software from pictures")
with a mouse-oriented developer's interface and excellent
browsers. These features facilitated rapid development and
code reuse. Another key feature is its support for data

acquisition and analysis in a single package. Other key
factors indicating its use included: excellent support,

continuous upgrades, availability of runtime version, a

strong user group, and widespread use.

HyperCard (available from Apple) is used for the HCI,
overall data management within the system, and module
activation. Its procedural scr;pting language and part-whole
object hierarchy facilitated the "rapid prototyping" style of
HCI construction essential to our system's development.
Other key factors indicating its use included: low cost,
widespread use, and good technical support from Apple.

The three tools communicate with each other using
AppleEvents and HyperCLIPS. HyperCLIPS, a set of two
simple one-way drivers, was developed by our team for
HyperCard-CLIPS interapplication communication.
"AppleEvents" is an interapplication communication
feature of the "System 7" version of the Macintosh
Operating System. CLIPS and LabVIEW do not
communicate directly with each other.



Thesystemcurrentlyusesall 8 MB of RAM.Virtual
memorywastestedandrejecteddueto theassociated
performancepenalty.HyperCardandLabVIEWareeach
allocated2,500KB of RAM,CLIPSis allocated1,800
KB,andtheremainderisusedbythecomputer'sOperating
System.Thesystemfiles4 currentlyoccupyabout11MB
ofharddiskstorage.

Themappingbetweenhardware/softwareandeachlogical
moduleof thesystem,asimplementedfor theRotating
DomeExperiment,is seenin figure2. An obvious
characteristicof ourarchitectureis thenecessitytomake
complicatedtechnicaltradeoffswhenbuildingsystems
whichintegratedifferenttoolsandsolverealproblems.

The HCI, called SM in our system, has been built as two
HyperCard stacks. One stack contains 26 "cards". Fourteen
of these serve as a persistent database (and are not viewed
directly), and 12 are used for display. The second stack
contains 16 "cards" that display pictures, line drawings, and
real-time data traces.

The data base is divided between HyperCard and CLIPS.
The HyperCard-resident portion consists of 14 cards. Most
of these are used to store data from the experiment: one card
is used for each step of the experiment that generates data.
There is one card used to display summary results of
previous experiment sessions. Two cards are used to store
data used "globally" by several of the modules. The
CLIPS-resident portion consists of about 120 base facts.
This number increases as the mission progresses and
experiment history is generated. During the typical
operation of the PS, there are about 200 facts in the data
base at any one time (out of 120 base facts and 400
generated facts).

An illustration of the system in use

Assume that the operator has just set up the laptop
computer and analog-to-digital converter in anticipation of
an experiment session. The system automatically loads
upon power-up of the Macintosh. Two minutes and twenty
seconds after power-on, startup is complete. The system
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Figure 3: Session startup

4 Includes documentation text files, rule files, permanent

data files, other application files and tool image files.
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has selected the next scheduled session, and presents
overview information such as the scheduled start time, end
time and subjects (figure 3). In this example, there are two
subjects, Mission Specialist 1 (MSI) and Payload
Specialist 1 (PS1). If the begin time or end time has
recently changed, the user communicates the currently
scheduled time to the system by clicking over the item to
be updated. There is also the ability to similarly
change/edit the subject list, as well as other options. When
the current settings are completely correct, the user
proceeds by selecting "Begin Session".

The system prepares for the next action, a functional
checkout of the experiment's electrical outputs. Notice that
since the "EMG" functional check should be performed, a
graphic is displayed to help assure correct electrode
placement (figure 4).

The LabVIEW-based DQM is used for this checkout and
autocalibration of the experiment apparatus (These checks
typically occur after equipment setup and before each new
subject enters the experiment, although they can be
optionally performed at any time during a session). The
system displays a list of the signals to be checked, with an
arrow pointing to the currently-checked signal. As each 10-
second check is occurring, a real-time trace of that signal is
displayed (figure 5). There are five signal traces that are
displayed from top to bottom on the left side of the screen:
Joystick, Biteboard, Right-EMG, Left-EMG, and
Tachometer. The Tachometer is a "heartbeat" trace that is

only 2 pixels high. Note that in figure 5, the Right-EMG

and Left-EMG signals are displayed simultaneously as part
of the single EMG check, and so there are two arrows
indicating the current signal.

The DQM performs one of the more interesting, and
challenging, tasks in our system. It was not obvious at
first how to interpret and react to a 10-second slice of
analog data. It was quickly realized during integration
testing that the experiment hardware electrical
specifications were not by themselves sufficient to
determine if a signal channel was functioning correctly. We
settled on partitioning the 10-second test into three
segments, a rest-condition segment, a full-positive-
deflection segment, and a full-negative-deflection segment.
These segments are identified by applying mathematical
filtering and differentiation operations. Specific parameters
are then calculated for each segment. The analysis of these
three segments is combined with known operational and
faulty states of the hardware to finally determine the health
of a given signal channel. When a signal is identified as
operationally OK, then the check further serves as a
calibration of the channel and is used by the DAM during
its run-data analysis. Then there is a problem, DQM does
not always indicate a unique fault. Resolution must then
occur later in a troubleshooting session.

Upon completion of all requested checks, a summary of
the results are displayed (figure 6). In this example, the
experiment apparatus is functioning correctly. If a problem
had been seen, then an automatic troubleshooting session
(DTM) is initiated, and a recommendation is prepared for
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the user. If troubleshooting is pursued, a series of
interactions guides the repair effort.

Shown next is the main display screen (figure 7), with a
summary of the current experiment protocol: (step) types,
step (dur)ation in minutes, (subj)ect, experiment
(cond)ition, etc. An arrow indicates the step currently being
performed, check marks indicate completed steps and,

finally, pending steps are listed below the current step. In
this case, Mission Specialist 1 (MS 1) is entering the dome
to be tested in the free-float condition. This information is

echoed in the "next run" display area just below the current
protocol listing, and can be changed/edited by mousing
over the item in need of update.

If the user wishes to check the procedures associated with
the current, completed, or upcoming step, they merely
click on that step in the current protocol window. A copy

of the paper-based checklists and procedures is then
displayed for review. These checklists exist as paper
documents. They can be easily converted to "PICT" files
which are then displayed by HyperCard. This facilitates
maintenance of the procedures within the system as a result
of Engineering Change Order (ECO) activity against the
experiment apparatus.

Real-time data collection and analysis

Pl-in-a-Box is a real-time KBS. It must receive, analyze,
and then act on the data that is generated by the experiment

quickly enough to be of use to the user. Each data-
producing step in the vestibular physiology experiment
consists of six 30-second data-producing trials (figure 8).

Each trial has 20 seconds of data gathering and real-time
display followed by I0 seconds of rest (figure 9). The 20-
second data collection/display period is controlled by a
LabVIEW-compatible driver supplied by GW Instruments,
the maker of the A/D converter. All five data channels are

sampled at a rate of 225 Hz. During this time, the driver
used for data acquisition monopolizes the PowerBook (even
the "mouse" is not tracked). The following 10 seconds are
shared by LabVIEW and HyperCard. The DAM performs
data analysis, reduction, parameter extraction, and archival.
It also communicates results to HyperCard for use in alerts
and for post-run analysis (If DAM determines that a critical
signal has malfunctioned during a trial then the run might
be halted for troubleshooting).

The system performs several actions after a run of 6
trials. It first checks that at least five of six trials in a run

have been successfully completed. If so, the run is labeled
"nominal". It then checks the data for agreement with the
current hypotheses (IDF). The IDF module presently
consists of about three dozen CLIPS rules. Heuristics

presently used to determine interestingness focus on the
presence, onset latency, and intensity of "vection". These
domain-specific heuristics include the following: the onset
of vection is interesting if it is consistently less than two
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Figure 8: A Rotating Dome Experiment run

seconds; early in the flight, maximum vection is
interesting if it is consistently greater than 90%; the
number of dropouts experienced by a subject is interesting
if it is consistently low (0) under tactile conditions; it is
interesting if maximum vection under tactile conditions is
consistently greater than maximum vection under non-
tactile conditions; etc.

After the IDF module runs, the system prepares for the
next run. Summary information is displayed for the user to
review. A possible post-run display is seen in figure 10. In
this case, the run was normal and the data was

"interesting". An explanation of the interestingness is
available for review if desired. In this example, the run was
interesting for two reasons. The sensation of vection began
quickly but with a low maximum compared to that
predicted by the results of that same subject's earlier runs

(see figure 11).

Between-run options

The user can invoke a variety of options (available from
the "Options" pull-down menu) at this time. One option is
to exploit the observed interestingness by asking the
system for a better plan for session completion (experiment
protocol). These protocols take into account the time
remaining in the current session, as well as which subjects
were tested, and with which results, from previous in-flight
sessions. One of the two resulting suggestions is the
"Proposed Protocol". This protocol observes session time
constraints. The other suggestion is the "Optimal
Protocol". This protocol relaxes the time constraint
slightly to offer a focused plan with minimal negative
impact on the mission time line. The time needed to

suggest these new protocols is usually less than 30
seconds. The PS module controlling this consists of about
200 rules.

I

I

I

I

I

3 minutes

I I11 I I I

data collection "- -"
(20 seconds)

data analysis
(<10 seconds)

Figure 9: A Rotating Dome Experiment trial
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Figure 11: A brief explanation of interesting data



The experiment protocol is conceptualized as follows.
There are a number of experiment sessions in a mission.
Each session is conducted in accordance with its protocol.
The protocol consists of a number of blocks. There is one
block for each subject, a block for experiment setup, and a
block for experiment stowage. Each block has a number of
steps. The setup and store blocks are straightforward, but
the optimum subject block order (and run ordering within a
given subject block) depends upon a complex interpretation
of previous mission history. The first task is to determine
which experiment steps should be performed and to assign
a (science) priority to each. The block ordering is
determined next. After that, step ordering within a block is
determined. Following the step ordering, minor setup tasks
are inserted. Finally, the result is checked against current
time constraints.

Heuristics presently used to determine new protocols
include:

• Get at least some data on every subject;
• Complete the data collection using a full set of

experiment conditions on at least one subject;
• After some data has been obtained, prefer missing

experiment conditions;
• Do not schedule bungee runs if the Joystick signal is bad;
• Schedule runs with similar experiment conditions
together;
• If the bungee is setup, schedule bungee runs first; if the
bungee is not setup, schedule runs that do not need it first;
• After some data has been obtained, if there are
"interesting" data to be confirmed on a subject, then prefer
that subject;
• If a subject is currently setup in the test apparatus,
schedule the remaining steps for that subject first;
• If no subject is setup, give first preference to a subject
with unfinished tests from an earlier session and give next
preference to a subject who was giving "interesting" data;
• If there was "interesting" data on a subject and experiment
condition from the current session, and the subject and
condition has not been repeated, then rerun the subject and
condition;

• If there was "interesting" data on a subject and experiment
condition from the current session, and that condition was

again run today, but was not again found to be
"interesting" then run that subject in that condition one
more time;
• If there was "interesting" data on a subject and experiment
condition from the current session, and that subject and
condition was again run today, but the condition was not
run on another subject, then run that condition on another

subject;
• ff there was "interesting" data to be confirmed on a
subject and experiment condition from a previous session,
and that condition was not run today, then run that subject
in that condition;

• If there was "interesting" data to be confirmed on a
subject and experiment condition from a previous session,

and that condition was run today, but was not again found
to be "interesting" then run that subject in that condition
one more time;
• If more time is needed than is currently allowed, cut the
least desirable (from science standpoint) step; etc.

As the previous paragraph suggests, it is difficult for an
astronaut (or even an investigator) under time pressure to
keep these heuristics together with their relative priority in
short-term memory and to apply them correctly when
rescheduling a session protocol.

Troubleshooting

Another option is to invoke a manual troubleshooting
session (DTM). The user has a chance to indicate a variety
of observed problems as seem in figure 12. In this case, the
user has indicated that the "ECDS" display associated with
an another onboard data-gathering computer is garbled. The
system responds by recommending reinitializing the ECDS
(figure 13), and displays the relevant portion of the control
panel to aid recall (figure 14). A further example is seen in
figures 15-16. Here, a bad EMG functional check lead to
investigation of the EMG connectors, and later, to
replacement of the EMG amplifier batteries. Additional
functional checks are occasionally part of the
troubleshooting process.

The DTM module consists of about 200 CLIPS rules.

The CLIPS rules work with procedural code in HyperCard
to guide the user through troubleshooting and repair. The
overall flow involves the formulation of a repair
recommendation based 3n the current experimental
situation (The recommendation could entail forgoing a

lengthy repair, for example). If troubleshooting continues,
the system traverses a graph step-by-step until either the
problem is repaired, the user terminates the session, or the
system has no further advice to offer. Steps include the
display of pictures (figure 14), line drawings (figure 15),
repair instructions (figure 16), conducting functional
checks, and making observations for the system (figure
15).

There are several other between-run options that can be
invoked from the "options" pull-down menu. These include
the use of a notepad, the review of the history of
previously-completed sessions, and a manual editing
facility for the current protocol. Finally, as mentioned
earlier, the procedures associated with any step can be
brought up for review.

System construction philosophy

The system makes maximum use of Commercial off-the-
Shelf Software to leverage programming effort and avoid
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(ent_rn)

Revlew/modify data. Click OK to continue or Cancel to exit

the troubleshooting session.

MET 03/01:26:00 GMT 19:24

Figure 12: Selecting manual troubleshooting
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Figure 13: DTM recommendation



Press this button

(found on the lower right portion

of the ECDS control panel)

rnlr_Jte$ b_vld rntr_lle_; at_e,ld _.

Jill .... hlllIllli[ll,iI .... I .... J,,] @
15 I0 5 0 5 10 1"5

Please press the RUN INITIALIZE/HALT button on the right

side of the ECDS front panel.

(Cancel to terminate troubleshooting.)

MET 03/01:26:00 GMT 19:24

Figure 14: DTM instruction
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(Cancel to terminate troubleshooting.)
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Figure 15: DTM request for information.
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polarityinstalledin+ UP position;UP Is
outward orexteriorpart ofbatteryhousing,

flattenedend ofbattery"+')
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when finished.
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Figure 16: DTM repair instruction.

"reinventing the wheel". Some custom coding was done
when necessary. There are clear advantages here:
development started against a target machine that was not
yet available, continued on a first-generation offering, and
was delivered on a second-generation machine. Thus, users
have the high performance of (and "excitement" of using)
current hardware, and developers are able to take advantage
of the increased hardware and software capabilities of the

host machine. This is important because application
software, and the programming paradigms it is based on,
change more slowly than Operating Systems, which in
turn change more slowly than CPUs. [Consider that
CLIPS has been around since 1986 (or earlier), HyperCard
and LabVIEW were first released in 1988, Macintosh
System 7 was released in 1991, and PowerBooks became

available in quantity in 1992.] 5 Perhaps just as

importantly, this approach has allowed better
maintainability and a cheap upgrade path by leveraging off
of the efforts of the technical staffs at Apple Computer,
Claris, National Instruments, and the Johnson Space
Center Software Technology Branch. For example, if we
had to incorporate a complete interapplication communica-

5 The pace of improvement of hardware-based computing

power over the last 20 years has been astonishing.
Looking ahead to. operations on a space station with a
projected life of 40 years or more, it is critical not to start
with hardware systems that will be obsolete before they
are latmched.

tion facility between CLIPS, HyperCard, and LabVIEW, it

would have been more expensive, less robust, and would
have probably locked us out of routine software upgrades.
Instead, we experimented with incremental enhancements
that we could discard or retain as more capable software
became available, or as the system's operational
requirements changed. Another maintenance win occurs
when team members occasionally, and inevitably, leave:
there is a quick ramp-up for the new member who is
already familiar with widely-used products like CLIPS,
LabVIEW, and HyperCard.

A modified version of .'.he spiral model of software
development was followed for most of the major modules.

This is a "requirements discovery" style where a rough
specification is used to guide knowledge engineering and to
rapidly construct a proto_.ype. The prototype is then
demonstrated internally (development team and end users)
and externally (colleagues and upper management).
Comments are then fed back into the specification. This
leads to a follow-on version of the module after another

iteration of knowledge engineering and rapid-prototyping.
We believe this approach to be superior to the waterfall
model of software development for KBSs for two chief
reasons. First, there is nc reasonable way to determine a
specification that is detailed enough to guide a multi-year
effort. It was only after coding, demonstrating, and using
prototypes that differences between the way the task was



describedandhowthetaskwasperformedwereresolved.6
Second,the"knowledge"in theKBSisnotstatic.Asa
resultof theSpaceLifeSciences1 Shuttlemissionin
June,1991,thereweresignificantchangesnotonlyin the
experimentanditsapproach,butalsoinourconceptionof
whatthePI-in-a-Boxsystemcouldbestdo.Ourapproachis
notperfect.Onepotentialproblemisdeterminingwhento
stopthedevelopmentcycle.In ourcase,therewerefirm
milestonesassociatedwiththeflightschedulethatprovided
thenecessaryconstraints.Anotherpotentialproblemis
maintenanceofrequirementsandtestdocuments.Aseach
developmentcyclemodifiesthesystem'srequirements,
thesechangesmustbecapturedandreflectedinthetestplan
andotherdocuments.Wefoundtheseissuestobeminor
frustrationscomparedto thebenefitsof our software
developmentscheme.

Aninterestingapproachtovalidatingamoduleis"cross-
prototyping".Thiswasusedononeof themodules.One
teammemberbuiltaprototypeof themodulebasedonthe
OfficialProductionSystem(OPS)styleofrepresentation.
Whenthatteammemberlefttheproject,maintenanceand
extensionof themodulewasgiventoanewmember.The
newmemberwas initially muchmorefamiliarwith
object/framerepresentationsthanwiththeOPSparadigm.
Afterunderstandingthepurposeandcurrentrequirementsof
the module,a new prototypewasquicklybuilt in
IntelliCorp'sKEE,andthentranslatedto theParmenides
frametoolandFRuleKitOPS-stylerulesystem(bothfrom
CarnegieMellonUniversity)runningoverMacintosh
AllegroCommonLISP.This providedperformance
comparisonsbetweenthetwoimplementationsandledto
thediscoveryandeliminationofseveralsubtlebugsin the
module.

Benefits of the knowledge-based system

The main benefit of this system is to maximize (or
certainly increase) the scientific quality of data from
experiments performed by humans in space. This in turn
increases the value of the research performed. The increased
value comes from increased crew productivity. This
increased productivity has two dimensions. First, time is
not spent on unproductive tasks after equipment failures.
Second, reactions to the scientific consequences of already-
gathered data are improved. Although caution should be
exercised in generating dollar figures, we estimate savings
of $6,000 per astronaut science hour (based on 20% crew

productivity increase from operational use and a
conservative figure of $30,000/hour of crew time on the

space station).

6 These differences included both the ground-based
scientists and the astronauts. In both cases, actual task

performance style was more conservative than the idealized
version articulated for the system developers. We feel that
the key to a really useful and valuable system lies in
aiding actual task performance.

Future directions

Use of the system in support of Space Shuttle mission

SLS-2 will continue through this year. The team is also
working to identify follow-on experiments in future
missions to support. After one or two experiments, we
hope to know enough to create a general-purpose tool to
aid science experiments in space, or indeed in any situation
where quick-look analysis can be used to guide the focus of
attention for the remainder of a limited scientific

observation period. Examples under consideration include
other life science experiments, materials science
experiments, atmospheric studies, and plasma physics.
While the system yields maximum benefit when applied to
a particular experiment, there is value in adding just the
DAM, DQM, and DTM modules to major
equipment/facilities on Space Station (e.g., centrifuge and
gas-grain simulation facility). This would allow a general-
purpose monitoring, diagnosis, and repair system to be
used over the life (20+ years) of the orbiting equipment. In
this case a repair recommendation is weakened to the extent
that experiment-specific data-collection heuristics and
history are not available.

Alternative approaches

There are alternatives to the in-situ knowledge-based
approach described in this paper. A more traditional
approach would be to add more ground support people at
one of the existing sites with voice and data channel links.
They would do the analysis and present results and
recommendations to the scientist. The traditional AI

approach would be to add LISPM (in place of people) in
the back room of Shuttle operations with a data-link to the
scientist. Both of these approaches are critically hindered by
the key problem of any ground-based solution: delays and
outages in receiving experiment data and transmitting
solutions to the crew. We feel that space experimentation
requires careful consideration of the tradeoffs between those
approaches and on-board intelligence.

Conceptually related work is associated with a Space
Shuttle-based cryogenic experiment, SHOOT (Superfluid
Helium On-Orbit Transfer). Two systems, AFDeX and
CMS, facilitate the conduct of SHOOT (Raymond 1989),
and (Shapiro and Robinson 1989). The AFDeX rule-based
system is designed to provide intelligent process control,
diagnosis, and error recovery. This system is hosted on a
80386-based GRiD laptop and will be sited in the Space
Shuttle's Aft Flight Deck. The AFDeX system software is
a combination of CLIPS and C code. AFDeX is capable on
autonomous (closed-loop) control of the experiment, but is
planned for use under astronaut control. The Command and
Monitoring System (CMS) is designed to provide near real-
time monitoring and control of the SHOOT experiment
from the Earth by the investigator. The CMS is hosted on
a Macintosh-II Computer. The system software is written



inAppleComputer'sMPW(C).It isanticipatedthatmost
(roughly80%)of thetimetheSHOOTexperimentwill be
undergroundcontrol,while the remainderis under
astronautcontrol.

Conclusion

PI-in-a-Boxis a uniqueKBS for aidingscientific
experimentationin space.WehaveusedAI (symbolic
reasoning),formerly-AI(advancedobject-orientedHCI)and
non-AI(dataacquisitionandanalysis)techniquestobuilda
usefulsystem.Our frameworkwill beexpandedand
generalizedintoatoolto aidtheinvestigationsthatwill
occuronSpaceStationFreedomin thelatterpartof this
decade.
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